Concurrently Composable Security with Shielded Super-Polynomial Simulators

نویسندگان

  • Brandon Broadnax
  • Nico Döttling
  • Gunnar Hartung
  • Jörn Müller-Quade
  • Matthias Nagel
چکیده

We propose a new framework for concurrently composable security that relaxes the security notion of UC security. As in previous frameworks, our notion is based on the idea of providing the simulator with super-polynomial resources. However, in our new framework simulators are only given restricted access to the results computed in super-polynomial time. This is done by modeling the super-polynomial resource as a stateful oracle that may directly interact with a functionality without the simulator seeing the communication. We call these oracles “shielded oracles”. Our notion is fully compatible with the UC framework, i. e., protocols proven secure in the UC framework remain secure in our framework. Furthermore, our notion lies strictly between SPS and Angel-based security, while being closed under protocol composition. Shielding away super-polynomial resources allows us to apply new proof techniques where we can replace super-polynomial entities by indistinguishable polynomially bounded entities. This allows us to construct secure protocols in the plain model using weaker primitives than in previous composable frameworks involving simulators with super-poly resources. In particular, we only use non-adaptive-CCA-secure commitments as a building block in our constructions. As a feasibility result, we present a constant-round general MPC protocol in the plain model based on standard assumptions that is secure in our framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Play ANY Mental Game Over the Net Concurrently composable secure computation without setup assumptions

We construct a protocol for general multi-party computation that remains secure even if executed concurrently with multiple copies of itself and of arbitrary other protocols. This is the first such construction that is based on standard cryptographic assumptions and does not require setup conditions such as the existence of a common reference string. Furthermore, our protocol utilizes only a co...

متن کامل

A New Approach to Black-Box Concurrent Secure Computation

We consider the task of constructing concurrently composable protocols for general secure computation by making only black-box use of underlying cryptographic primitives. Existing approaches for this task first construct a black-box version of CCA-secure commitments which provide a strong form of concurrent security to the committed value(s). This strong form of security is then crucially used ...

متن کامل

Black-Box Constructions of Composable Protocols without Set-Up

We present the first black-box construction of a secure multiparty computation protocol that satisfies a meaningful notion of concurrent security in the plain model (without any set-up, and without assuming an honest majority). Moreover, our protocol relies on the minimal assumption of the existence of a semi-honest OT protocol, and our security notion “UC with super-polynomial helpers” (Canett...

متن کامل

A Unified Framework for UC from Only OT

In [1], the authors presented a unified framework for constructing Universally Composable (UC) secure computation protocols, assuming only enhanced trapdoor permutations. In this work, we weaken the hardness assumption underlying the unified framework to only the existence of a stand-alone secure semi-honest Oblivious Transfer (OT) protocol. The new framwork directly implies new and improved UC...

متن کامل

Round-Efficient Concurrently Composable Secure Computation via a Robust Extraction Lemma

We consider the problem of constructing protocols for secure computation that achieve strong concurrent and composable notions of security in the plain model. Unfortunately UC-secure secure computation protocols are impossible in this setting, but the Angel-Based Composable Security notion offers a promising alternative. Until now, however, under standard (polynomialtime) assumptions, only prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016